Table of Contents

  1. 3D Computer Vision Fundamentals
  2. Motion Analysis & Tracking
  3. Deep Learning for Computer Vision
  4. Comprehensive Final Project
  5. Performance Optimization & Deployment
  6. Next Steps & Advanced Resources

1. 3D Computer Vision Fundamentals

1.1 Stereo Depth Estimation

% Load stereo image pair
I1 = imread('scene_left.jpg');
I2 = imread('scene_right.jpg');

% Compute disparity map
disparityRange = [0 64];
disparityMap = disparitySGM(rgb2gray(I1), rgb2gray(I2),...
                'DisparityRange', disparityRange,...
                'UniquenessThreshold', 15);

% Visualize results
figure;
imshow(disparityMap, disparityRange);
colormap jet; colorbar;
title('Disparity Map');

Key Parameters:


1.2 Point Cloud Processing

% Generate point cloud from depth data
ptCloud = pcfromdepth(depthImage, depthFactor, intrinsics);

% Downsample and denoise
ptCloud = pcdownsample(ptCloud, 'gridAverage', 0.01);
ptCloud = pcdenoise(ptCloud);

% Visualize with custom view
player = pcplayer(ptCloud.XLimits, ptCloud.YLimits, ptCloud.ZLimits);
view(player, ptCloud);

Applications: